Critical Temperatures for the Thermal Explosion of Chemicals

Takashi Kotoyori

National Institute of Industrial Safety
1-4-6 Umezono, Kiyose, Tokyo 204-0024, Japan
Preface

Knowledge regarding the two characteristic temperatures, the T_c and the SADT,* which are used to express the thermal instability of a chemical of the TD type and that of a chemical of the AC type,** having each an arbitrary shape and an arbitrary size, placed each in the atmosphere under isothermal conditions,*** respectively, is indispensable in temperature control to prevent such a chemical from exploding thermally.

In this connection, when charged in the open-cup cell, or confined in the closed cell, in accordance with the self-heating property of the chemical, and subjected to the adiabatic self-heating test started from a T_s, if 2 cm3 of a chemical continues to self-heat over the T_s at a rate depending on the value of T_s in accordance with the Arrhenius equation, after its having been warmed up to the T_s, the self-heating behavior of the chemical is said to be of the TD type. In this sense, the oxidatively-heating behavior of 2 cm3 of a gas-permeable oxidatively-heating substance, such as sawdust, coal dust or oil-soaked lagging, charged in the draft cell, into which an arbitrary oxidizing gas is supplied, and subjected to the adiabatic oxidatively-heating test started from a T_s, is also of the TD type. It is, therefore, possible to calculate the critical temperature for the spontaneous ignition or T_c for a gas-permeable oxidatively-heating substance, having an arbitrary shape and an arbitrary size, placed in the atmosphere under isothermal conditions, in the same manner as applied to the calculation of the T_c for a chemical of the TD type.

In order to determine the T_c for a chemical of the TD type, including every gas-permeable oxidatively-heating substance, and the SADT for a chemical of the AC type, including every powdery chemical of the quasi-AC type, having each an arbitrary shape and an arbitrary size, placed each in the atmosphere under isothermal conditions, it has been required so far to follow, by experimental measurements, the whole self-heating process of the chemical up to the actual thermal explosion, or up to the actual spontaneous ignition. The actual explosion, or ignition, experiment, however, requires much effort, time, space and material and, therefore, is dangerous and expensive. Very few values of T_c or SADT are thus available at present.

On the other hand, there have certainly been some cases so far, in each of which the value of T_c for a chemical of the TD type was attempted to calculate

* For the individual definitions of the T_c and the SADT, refer to Notation.
** A classification of self-heating chemicals is introduced in Chapter 3.
*** The adjective, isothermal, or, non-adiabatic, is used to express such a state that the temperature of the atmosphere which surrounds a self-heating chemical is maintained at a definite value throughout the self-heating process of the chemical, with the result that the heat generated by the exothermic decomposition reaction of the chemical is allowed to transfer from the chemical to the atmosphere. The same is true of the oxidatively-heating process of a gas-permeable oxidatively-heating substance.
by substituting the physical quantities, such as λ, c, ρ, U and S, and the chemical quantities, such as E, A_0 and ΔH, all of which require to be measured separately by specific experimental methods, respectively, of the chemical into either of the two equations constituting the thermal explosion theory, i.e., the Semenov equation and the Frank-Kamenetskii or F-K equation.

Such calculations have, however, been haunted by the uncertainty of measured values, especially, of the chemical quantities, E, A_0 and ΔH, which specify as a whole the rate of heat generation per unit volume per unit time in the early stages of the self-heating process of a chemical of the TD type, including every gas-permeable oxidatively-heating substance, because these chemical quantities are very difficult to measure precisely by means of conventional experimental techniques. The values of E and A_0 of a chemical may be determined by thermal analysis, or by measuring the rate of the exothermic decomposition reaction, of a small quantity of the chemical at temperatures far higher than room temperature, respectively. Such circumstances are, however, not necessarily the same as those which lead to the actual thermal explosion, or to the actual spontaneous ignition, of the chemical. That is, the experimental conditions of the forced external heating for the chemical followed by a rapid rate of increase in temperature of the chemical are clearly different from the actual conditions of the spontaneous heating of the chemical itself followed by a slow rate of increase in temperature of the chemical. Besides, although the value of ΔH of an ordinary substance in general is measured based on the complete combustion reaction, there is always a possibility that the value of ΔH which a chemical of the TD type, including every gas-permeable oxidatively-heating substance, generates in the early stages of the self-heating process, or of the oxidatively-heating process, is that of an incomplete exothermic decomposition reaction, or of an incomplete oxidative decomposition reaction, accompanied with the formation of some transient and unstable intermediate.

Now, are introduced herein entirely new and simple procedures to calculate the T_c for a chemical of the TD type, including every gas-permeable oxidatively-heating substance, having an arbitrary shape and an arbitrary size, placed in the atmosphere under isothermal conditions, and, the SADT for a chemical of the AC type, including every powdery chemical of the quasi-AC type, having an arbitrary shape and an arbitrary size, confined in an arbitrary closed container of the corresponding shape and size, and placed in the atmosphere under isothermal conditions.

The procedure to calculate the T_c for a chemical of the TD type, including every gas-permeable oxidatively-heating substance, having an arbitrary shape and an arbitrary size, placed in the atmosphere under isothermal conditions, is, in particular, based on the basic concept of the thermal explosion theory that whether the thermal explosion or the spontaneous ignition of a chemical of the TD type, including every gas-permeable oxidatively-heating substance, having an arbitrary shape and an arbitrary size, placed in the atmosphere under
isothermal conditions, occurs or not is decided, based on the balance between the rate of heat generation in the chemical and the rate of heat transfer from the chemical to the atmosphere at the critical state for the thermal explosion which exists at the end of the early stages of the self-heating process. According to this procedure, we require neither to follow by experimental measurements the whole self-heating process of the chemical of the TD type up to the actual thermal explosion, or up to the actual spontaneous ignition, to determine the T_c, nor to measure the values of the chemical quantities, E, A_0 and ΔH, respectively, to calculate the T_c.

For the purpose of calculating the T_c for a chemical of the TD type, including every gas-permeable oxidatively-heating substance, having an arbitrary shape and an arbitrary size, placed in the atmosphere under isothermal conditions, we have only to perform, on the one hand, several adiabatic self-heating tests, or several adiabatic oxidatively-heating tests, which are started from each T_s with mutual intervals of $1\sim2$ K, in order to calculate the heat generation data of the chemical, for 2 cm^3 each of several samples of the chemical charged, or confined, each in some one of the open-cup, the draft or the closed cell, in accordance with the self-heating property of the chemical, for the time required for the temperature of each sample of the chemical to increase by 1.25 K from the corresponding T_s in the adiabatic self-heating test, or from the corresponding standard temperature in the adiabatic oxidatively-heating test, respectively, and, we have only to measure, on the other hand, the heat transfer data of the chemical, having an arbitrary shape and an arbitrary size, placed in the atmosphere under isothermal conditions, in temperature differences of 1.25 K between the inside of the chemical and the atmosphere, under conditions of no air circulation.

In Chapter 1, after both the Semenov and the F-K equation were derived, it is confirmed that both equations express the balance between the rate of heat generation in a chemical of the TD type, including every gas-permeable oxidatively-heating substance, having an arbitrary shape and an arbitrary size, placed in the atmosphere under isothermal conditions, and, the rate of heat transfer from the chemical to the atmosphere at the critical state for the thermal explosion which exists at the end of the early stages of the self-heating process, respectively. It is then concluded that the Semenov equation is appropriate for the calculation of the T_c for a liquid chemical of the TD type and the F-K equation is appropriate for the calculation of that for a solid chemical of the TD type, including every gas-permeable oxidatively-heating substance.

In Chapter 2, is derived the adiabatic temperature increase equation, which holds between the rate of heat generation per unit volume per unit time in the early stages of the self-heating process of a small-scale chemical of the TD type, including every small-scale gas-permeable oxidatively-heating substance, having the spatially uniform distribution of internal temperature, subjected to either of the two kinds of adiabatic tests, and, the rate of increase in temperature of the chemical, assuming the effect of the concentration of the chemical on the
rate of the exothermic decomposition reaction in the early stages of the self-heating process to be of the zeroth order.

In Chapter 3, a classification of self-heating chemicals, except gas-permeable oxidatively-heating substances, is introduced. Treatments of gas-permeable oxidatively-heating substances are made in Chapters 7 and 8. Self-heating chemicals are divided into two large groups, i.e., the thermal decomposition or TD type and the autocatalytic reaction or AC type. The TD type is subdivided into liquid chemicals, for each of which the Semenov equation is applied to calculate the T_c, and, solid (powdery, in reality) chemicals, for each of which the F-K equation is applied to calculate the T_c. On the other hand, the AC type is subdivided into high explosives of the true AC type and powdery chemicals of the quasi-AC type.

When confined in the closed cell and subjected to the adiabatic self-heating test started from a T_s, or to the isothermal storage test performed at a T_t, 2 cm3 of a chemical of the AC type, including every powdery chemical of the quasi-AC type, does not continue to self-heat over the T_s or the T_t; rather, it starts to self-heat after the lapse of the induction period of the autocatalytic reaction, or of the quasi-autocatalytic reaction, of the chemical in both tests. That is, the self-heating behavior of a chemical of the AC type is not of the TD type, so that it is impossible to apply either of the two equations of the thermal explosion theory to the calculation of the T_c for the chemical. Instead, it is possible to calculate the SADT for a chemical of the AC type, including every powdery chemical of the quasi-AC type, having an arbitrary shape and an arbitrary size, confined in an arbitrary closed container of the corresponding shape and size, and placed in the atmosphere under isothermal conditions, by applying an empirical formula holding for the induction period of the autocatalytic reaction, or of the quasi-autocatalytic reaction, of 2 cm3 of the chemical subjected to the isothermal storage test.

The T_c for a chemical of the TD type, including every gas-permeable oxidatively-heating substance, depends on its shape and size. On the other hand, the SADT for a chemical of the AC type, including every powdery chemical of the quasi-AC type, does not depend, in principle, on its size or quantity. The difference between the concept of the T_c and that of the SADT is discussed at the end of this chapter.

In Chapter 4, an adiabatic self-heating process recorder is explained in detail. This recorder is used to perform the adiabatic self-heating test, or the adiabatic oxidatively-heating test, which is started from a T_s, in order to calculate ultimately the heat generation data of a chemical of the TD type, including every gas-permeable oxidatively-heating substance, for 2 cm3 of the chemical charged, or confined, in some one of the open-cup, the draft or the closed cell, in accordance with the self-heating property of the chemical, for the time required for the temperature of the chemical to increase by 1.25 K from the T_i in
the adiabatic self-heating test, or from the corresponding standard temperature in the adiabatic oxidatively-heating test.

Is then explained in detail the procedure to calculate the values of the two coefficients, \(a \) and \(b \), of an empirical formula. This formula is obtained directly from the adiabatic temperature increase equation derived in Chapter 2 and holds for the self-heating process, or for the oxidatively-heating process, in the early stages, of 2 cm\(^3\) of a chemical of the TD type, including every gas-permeable oxidatively-heating substance, charged, or confined, in some one of the open-cup, the draft or the closed cell, in accordance with the self-heating property of the chemical, and subjected to either of the two kinds of adiabatic tests. The values of the two coefficients, \(a \) and \(b \), thus calculated, of the empirical formula are then used as the heat generation data of the chemical, together with the heat transfer data, to calculate the \(T_c \) for the chemical, having an arbitrary shape and an arbitrary size, placed in the atmosphere under isothermal conditions, by applying the reduced form of the Semenov equation or that of the F-K equation.

Although any other existent adiabatic self-heating process recorders are also useful for the calculation of the heat generation data of a chemical of the TD type, including every gas-permeable oxidatively-heating substance, the recorder used in a series of adiabatic self-heating tests, or in a series of adiabatic oxidatively-heating tests, described herein is introduced in this chapter. It is, however, hoped that any new and simple apparatus functioning better than the recorder used herein has clearly some defects.

In Chapter 5, is first explained the reason why the Semenov equation is applicable to the calculation of the \(T_c \) for an arbitrary volume of a liquid charged in an arbitrary container and placed in the atmosphere under isothermal conditions without stirring the liquid or without circulating air around the container.

In this connection, the self-heating behavior of every self-heating liquid chemical, with the exception of liquid high explosives, such as nitroglycerin, of the true AC type, is of the TD type. A self-heating liquid chemical of the TD type or self-heating liquid chemicals of the TD type are, therefore, described herein simply as a liquid or liquids.

The procedure to calculate, by applying the reduced form of the Semenov equation, the \(T_c \) for an arbitrary volume of a liquid charged in an arbitrary container and placed in the atmosphere under isothermal conditions is then introduced by taking the procedure to calculate the value of the BAM test for 400 cm\(^3\) of 99 % tert-butyl peroxybenzoate (TBPB), assuming that it is charged in a 500 cm\(^3\) Dewar flask used in the BAM (Bundesanstalt für Materialforschung und -prüfung, Berlin) heat-accumulation storage test and is placed in the atmosphere under isothermal conditions, as an example. Results
obtained for ten organic liquid peroxides, including TBPB, are successively presented.

In Chapter 6, the procedure to calculate, by applying the reduced form of the F-K equation, the T_c for a powdery chemical of the TD type, having some one of several specific shapes as well as an arbitrary size, confined in an arbitrary closed container of the corresponding shape and size and placed in the atmosphere under isothermal conditions, is introduced by taking the procedure to calculate the T_c for 98% α, β-azobis(isobutyronitrile) (AIBN), assuming that it is confined in a fiber drum, 39.5 cm in inside diameter, 59.2 cm in inside length, and is placed in the atmosphere under isothermal conditions, as an example. Results obtained for ten powdery chemicals of the TD type, including AIBN, are successively presented.

In Chapter 7, is explained in detail the procedure to perform several adiabatic oxidatively-heating tests, which are started from each T_s with mutual intervals of $1 \sim 2$ K, in order to calculate the heat generation data of a gas-permeable oxidatively-heating substance, for 2 cm3 each of several samples of the substance charged each in the draft cell, into which an arbitrary oxidizing gas is supplied, for the time, Δt, required for the temperature of each sample of the substance to increase by 1.25 K from the corresponding standard temperature, respectively.

In this connection, as stated already, the oxidatively-heating behavior of a gas-permeable oxidatively-heating substance, such as sawdust, coal dust or oil-soaked lagging, is also of the TD type. A gas-permeable oxidatively-heating substance of the TD type or gas-permeable oxidatively-heating substances of the TD type are, therefore, described herein simply as a gas-permeable oxidatively-heating substance or gas-permeable oxidatively-heating substances.

Besides, whenever the adiabatic oxidatively-heating test is performed for an oxidatively-heating liquid, such as unsaturated fatty acid, the liquid is tested, in principle, in the form of oil-soaked adsorbent cotton at relatively low temperatures, or in the form of oil-soaked glass wool at relatively high temperatures. And, the T_c for a heap of the oil-soaked adsorbent cotton, or the T_c for that of the oil-soaked glass wool, having some one of the several specific shapes as well as an arbitrary size, placed in the atmosphere under isothermal conditions, is also calculated in the same manner as applied to the calculation of the T_c for a heap of a gas-permeable oxidatively-heating substance.

For the above reasons, both gas-permeable oxidatively-heating substances and oxidatively-heating liquids are dealt with as gas-permeable oxidatively-heating substances all together herein.

In Chapter 8, the sawdust of every wood species is dealt with as a representative of gas-permeable oxidatively-heating substances. The individual oxidatively-heating properties of the sawdusts of fifteen wood species, which are measured, on the one hand, by TG-DTA performed in air, and, on the other hand, by the adiabatic oxidatively-heating test performed in air, respectively, are first described.
The procedure to calculate, by applying the reduced form of the F-K equation, the T_c for a sawdust heap, having some one of the several specific shapes as well as an arbitrary size, placed in the atmosphere under isothermal conditions, is then introduced by taking the procedure to calculate the T_c for a sawdust heap of Port Orford cedar, assuming that it is formed into an infinite slab, 60.96 cm in thickness, and is placed in the atmosphere under isothermal conditions, as an example. Results obtained for the sawdust heaps of fifteen wood species, including Port Orford cedar, are successively presented.

In Chapter 9, is introduced the procedure to calculate the SADT for a high explosive of the true AC type, having an arbitrary shape and an arbitrary size, confined in an arbitrary closed container of the corresponding shape and size, and placed in the atmosphere under isothermal conditions, by applying the empirical formula holding for the induction period of the autocatalytic reaction of 2 cm3 of the high explosive confined in the closed cell and subjected to the isothermal storage test, by taking the procedure to calculate the SADT for collodion cotton (12.19 % N) as an example. Results obtained for eight high explosives of the true AC type, including collodion cotton, are successively presented.

Although any other existent isothermal storage testing devices are also useful for the calculation of the SADT for a chemical of the AC type, including every powdery chemical of the quasi-AC type, the device used to perform a series of isothermal storage tests described herein is introduced in this chapter.

Finally in Chapter 10, is introduced the procedure to calculate, in the same manner as applied to the calculation of the SADT for a high explosive of the true AC type, the SADT for a powdery chemical of the quasi-AC type, having an arbitrary shape and an arbitrary size, confined in an arbitrary closed container of the corresponding shape and size, and placed in the atmosphere under isothermal conditions, by applying the empirical formula holding for the induction period of the quasi-autocatalytic reaction of 2 cm3 of the chemical confined in the closed cell and subjected to the isothermal storage test, by taking the procedure to calculate the SADT for 97 % lauroyl peroxide as an example. Results obtained for five powdery chemicals of the quasi-AC type, including lauroyl peroxide, are successively presented.

In conclusion, the following three points are added.

First, every chemical becomes liable to self-heat after a long-term storage; in the meantime, very fresh products of chemicals in general are also more liable to self-heat than the normal ones, irrespective of whether they are of the TD type or of the AC type. It is, therefore, possible that the true value of T_c, or that of SADT, is fairly lower than that calculated herein. Measures for this are to assign a due safety margin to each value of T_c or SADT calculated herein. It is for the above reasons that a temperature 30 K lower than the value of the BAM test, or that of SADT, calculated for each of organic liquid peroxides, powdery chemicals of the TD type, high explosives of the true AC type and powdery
chemicals of the quasi-AC type, is proposed herein as the upper limit temperature for the safe handling of the chemical.*

Secondly, there is also a possibility that the value of T_e, or that of SADT, for a chemical including some impurity, which may promote or catalyze the exothermic decomposition reaction, or the autocatalytic reaction, of the chemical, is considerably lower than that for the pure chemical. For instance, some cases are known, in each of which a chemical reacts with the material of the cell in which the chemical is charged, or confined, in thermal analysis or in some thermal instability test. It is, however, of course possible to calculate the value of T_e, or that of SADT, for an arbitrary self-heating mixture by applying some one of several kinds of procedures presented herein.

Thirdly, it is hoped that some apparatus, by means of which the value of T_e, or that of SADT, for an arbitrary self-heating chemical, having an arbitrary shape and an arbitrary size, placed in the atmosphere under isothermal conditions, is calculated automatically based on some one of several kinds of procedures presented herein, is developed in the future.

* Theoretically speaking, it is not very appropriate to specify the upper limit temperature for the safe handling for a chemical of the TD type, including every gas-permeable oxidatively-heating substance, because the T_e for a chemical of the TD type is not a temperature value specific to the chemical; rather, it depends on its shape and size. Nevertheless, it is also certain that the size of a chemical of the TD type corresponding to a value of T_e 30 K lower than that calculated herein for the chemical is a tremendous one. At all events, however, it is certain that the best way for us is to avoid accumulating any self-heating chemical in bulk at all times. A subject relevant to this point is argued in Subsection 6.7.2.
Table of contents

Notation xxiii

Chapter 1 An approach to the thermal explosion theory 1

1.1 The basic concept of the thermal explosion theory 1

1.2 Derivation of the Semenov equation 3

1.3 Derivation of the Frank-Kamenetskii equation 9

1.4 The balance, which is contained in both the Semenov and the F-K equation, between the rate of heat generation and the rate of heat transfer 13

1.5 The relationship holding among S_e, δ^e, and the Biot number 15

1.6 A brief history of the thermal explosion research 19

Chapter 2 The adiabatic temperature increase equation 23

2.1 Introduction 23

2.2 An equation holding between the rate of heat generation per unit volume per unit time in the early stages of the self-heating process of a small-scale chemical of the TD type, including every small-scale gas-permeable oxidatively-heating substance, having the spatially uniform distribution of internal temperature, subjected to either of the two kinds of adiabatic tests, and, the rate of increase in temperature of the chemical 24

2.3 Validity of the substitution of the two coefficients, a and b, of Eq. (44) into the F-K equation as well as the Semenov equation 25

2.4 Derivation of the adiabatic temperature increase equation 26

2.5 An alternative method to derive the adiabatic temperature increase equation 33
2.6 Frank-Kamenetskii’s adiabatic induction period, τ_{ad}

2.7 Validity of the linear approximation of the self-heating process or curve, in the early stages, of 2 [cm3] of a chemical of the TD type charged in the open-cup cell, or confined in the closed cell, in accordance with the self-heating property of the chemical, and subjected to the adiabatic self-heating test started from a T_s

Chapter 3 A classification of self-heating chemicals

3.1 A broad classification of self-heating chemicals into the two large groups, i.e., the TD type and the AC type

3.2 Derivation of an empirical formula, $\ln \Delta t = a/T_t + b$, i.e., Eq. (59), which is used to calculate the SADT for a chemical of the AC type, including every powdery chemical of the quasi-AC type, having an arbitrary shape and an arbitrary size, confined in an arbitrary closed container of the corresponding shape and size, and placed in the atmosphere under isothermal conditions

3.3 Powdery chemicals of the quasi-AC type

3.4 Correlation among the pattern of the TG-DTA curve of a self-heating powdery chemical, the two types of self-heating behaviors, i.e., the TD type and the quasi-AC type, and the two equations of the thermal explosion theory

3.5 The difference between the concept of the T_c and that of the SADT

Chapter 4 An adiabatic self-heating process recorder

4.1 Introduction

4.2 Structure and performance of the air bath of the adiabatic self-heating process recorder

4.3 Development of the glass closed cell
4.4 Characteristics of the glass closed cell

4.5 Detailed procedure to perform the adiabatic self-heating test, which is started from a T_s, for 2 cm3 of a chemical of the TD type confined in the closed cell, for the time, Δt, required for the temperature of the chemical to increase by the definite value of ΔT of 1.25 K from the T_s.

4.5.1 Preheating of the air bath of the adiabatic self-heating process recorder and the choice of a nominal T_s in the adiabatic self-heating test, which is started from the nominal T_s, performed for 2 cm3 of a chemical of the TD type confined in the closed cell.

4.5.2 Procedure to prepare the reference cell assembly including the closed cell.

4.5.3 Insertion of the reference cell assembly into the adiabatic jacket set in the preheated air bath.

4.5.4 Curves drawn by the T pen and the ΔT_{diff} pen on the strip chart of the two-pen strip chart recorder.

4.5.5 Determination of the exact value of T_s of the run.

4.5.6 Insertion of the sample cell assembly into the adiabatic jacket maintained at the T_s of the run and the start of the adiabatic self-heating test for 2 cm3 of a chemical of the TD type confined in the closed cell.

4.5.7 Record of the self-heating process, in the early stages, of 2 cm3 of a chemical of the TD type confined in the closed cell and inserted into the adiabatic jacket kept always at the very slowly increasing temperature of the chemical itself by the adiabatic control.

4.5.8 Some reasons why a value of ΔT of 1.25 K was chosen as the definite value of ΔT in the two kinds of adiabatic tests performed each for 2 cm3 of a chemical of the TD type, including
4.6 Some problems accompanied with the adiabatic self-heating test performed by means of the adiabatic self-heating process recorder

4.7 Procedure to calculate the values of the two coefficients, a and b, of Eq. (44), $\ln \Delta t = a/T_s + b$, holding for the self-heating process, or for the oxidatively-heating process, in the early stages, of 2 cm3 of a chemical of the TD type, including every gas-permeable oxidatively-heating substance, charged, or confined, in some one of the open-cup, the draft or the closed cell, in accordance with the self-heating property of the chemical, and subjected to either of the two kinds of adiabatic tests

Chapter 5 Procedure to calculate the T_c for an arbitrary volume of a liquid charged in an arbitrary container and placed in the atmosphere under isothermal conditions

5.1 Introduction

5.2 The reason why the Semenov equation is applicable to the calculation of the T_c for an arbitrary volume of a liquid charged in an arbitrary container and placed in the atmosphere under isothermal conditions without stirring the liquid or circulating air around the container

5.3 Derivation of equations

5.4 Procedure to perform several adiabatic self-heating tests, which are started from each T_s with mutual intervals of 1~2 K, in order to calculate the heat generation data of a liquid, for 2 cm3 each of several samples of the liquid charged each in the open-cup cell, for the time, Δt, required for the temperature of each sample of the liquid to increase by the definite value of ΔT of 1.25 K from the corresponding T_s, respectively

5.5 Individual procedures to measure the four heat transfer data, i.e., q_s, $(T_{\text{liq}} - T_{\text{set-up}})$, c and ρ, of an arbitrary volume of a liquid charged
in an arbitrary container and placed in the atmosphere under isothermal conditions 125

5.6 Concrete procedure to calculate the value of the BAM test for 400 cm3 of TBPB charged in the 500 cm3 Dewar flask, used in the BAM test, and placed in the atmosphere under isothermal conditions 133

5.7 Results and discussion 136

5.8 Comparison of the values of U calculated each for the three kinds of volumes of kerosene charged each in the corresponding containers used herein, with, the values of U measured each by other researchers for a few kinds of liquids charged each in the corresponding containers other than those used herein 147

Chapter 6 Procedure to calculate the T_c for a powdery chemical of the TD type, having some one of several specific shapes including the so-called class A geometries as well as an arbitrary size, confined in an arbitrary closed container of the corresponding shape and size, and placed in the atmosphere under isothermal conditions 159

6.1 Introduction 159

6.2 Derivation of the reduced form of the F-K equation 160

6.3 Procedure to perform several adiabatic self-heating tests, which are started from each T_s with mutual intervals of $1 \sim 2$ K, in order to calculate the heat generation data of a powdery chemical of the TD type, for 2 cm3 each of several samples of the chemical confined each in the closed cell, for the time, Δt, required for the temperature of each sample of the chemical to increase by the definite value of ΔT of 1.25 K from the corresponding T_s, respectively 164

6.4 Equation and procedure to calculate the value of α_c of a powdery chemical of the TD type, including every gas-permeable oxidatively-heating substance, by applying the constant-heating-rate method 173
6.5 Individual values of δ_c for the several specific shapes including the so-called class A geometries 185

6.6 Concrete procedure to calculate the T_c for a powdery chemical of the TD type, having some one of the several specific shapes including the class A geometries as well as an arbitrary size, confined in an arbitrary closed container of the corresponding shape and size, and placed in the atmosphere under isothermal conditions 187

6.7 Results and discussion 190

6.8 Trial to calculate the value of the BAM test for an arbitrary powdery chemical of the TD type 198

Chapter 7 Procedure to perform the adiabatic oxidatively-heating test in order to calculate ultimately the heat generation data of a gas-permeable oxidatively-heating substance 207

7.1 Equation to calculate the T_c for a heap of a gas-permeable oxidatively-heating substance, having some one of several specific shapes including the class A geometries as well as an arbitrary size, placed in the atmosphere under isothermal conditions 207

7.2 The cell assembly including some one of the three kinds of open cells, i.e., the open-cup, the draft and the touch-flow cell 209

7.3 Procedure to prepare the cell assembly including some one of the three kinds of open cells 212

7.4 Four kinds, in all, of testing procedures corresponding each to the four kinds of gas-permeable oxidatively-heating substances 217

Chapter 8 Individual oxidatively-heating properties of the sawdusts of fifteen wood species; and, procedure to calculate the T_c for a sawdust heap, having some one of several specific shapes including the class A geometries as well as an arbitrary size, placed in the atmosphere under isothermal conditions 235
8.1 Introduction 235

8.2 Experimental 237

8.3 Experimental results regarding the individual oxidatively-heating properties of the sawdusts of fifteen wood species 239

8.4 Procedure to calculate the T_c for a sawdust heap, having some one of the several specific shapes including the class A geometries as well as an arbitrary value of r, placed in the atmosphere under isothermal conditions 270

8.4.1 Procedure to perform several adiabatic oxidatively-heating tests, which are started from each T_s with mutual intervals of 2 K, in order to calculate the heat generation data of the sawdust of a wood species, for 0.3 g each of several samples of the sawdust charged each in the draft cell, into which air is supplied, for the time, Δt, required for the temperature of each sample of the sawdust to increase by the definite value of ΔT of 1.25 K from the corresponding standard temperature, respectively 270

8.4.2 Individual procedures to determine the two heat transfer data, i.e., δ_c and α_e, of a sawdust heap, having an arbitrary shape and an arbitrary size, placed in the atmosphere under isothermal conditions 277

8.4.3 Concrete procedure to calculate the T_c for a sawdust heap, having an arbitrary shape and an arbitrary size, placed in the atmosphere under isothermal conditions 279

8.4.4 Results and discussion 281

(1) The values of T_c calculated each for the sawdust heaps of fifteen wood species 281

(2) Critical radius for the spontaneous ignition, r_c, for a similar body of a gas-permeable oxidatively-heating substance, having some one of several specific shapes including the
Chapter 9 Procedure to calculate the SADT for a high explosive of the true AC type, having an arbitrary shape and an arbitrary size, confined in an arbitrary closed container of the corresponding shape and size, and placed in the atmosphere under isothermal conditions

9.1 Introduction

9.2 An isothermal storage testing device used to perform the isothermal storage test at a \(T_t \), in order to calculate ultimately the SADT for a chemical of the AC type, including every powdery chemical of the quasi-AC type, having an arbitrary shape and an arbitrary size, confined in an arbitrary closed container of the corresponding shape and size, and placed in the atmosphere under isothermal conditions, for 2 cm\(^3\) of the chemical confined in the closed cell, for the time, \(\Delta t \), from the insertion of the cell into the isothermal storage testing device till the start of the autocatalytic reaction, or of the quasi-autocatalytic reaction, of the chemical at the \(T_t \), \(i.e. \), during the induction period of the autocatalytic reaction, or of the quasi-autocatalytic reaction, of the chemical at the \(T_t \), holding for the induction period of the autocatalytic reaction of 2 cm\(^3\) of a high explosive of the true AC type confined in the closed cell and subjected to the isothermal storage test, for 2 cm\(^3\) each of several samples of the high explosive confined each in the closed cell, for the time, \(\Delta t \), from the insertion of each cell into the isothermal storage testing device till the start of the autocatalytic reaction of the high explosive at the corresponding \(T_t \), respectively

9.3 Procedure to perform several isothermal storage tests at each \(T_t \) with mutual intervals of 1 ~ 2 K, in order to calculate the values of the two coefficients, \(a \) and \(b \), of Equation (59), \(\ln \Delta t = a/T_t + b \), holding for the induction period of the autocatalytic reaction of 2 cm\(^3\) of a high explosive of the true AC type confined in the closed cell and subjected to the isothermal storage test, for 2 cm\(^3\) each of several samples of the high explosive confined each in the closed cell, for the time, \(\Delta t \), from the insertion of each cell into the isothermal storage testing device till the start of the autocatalytic reaction of the high explosive at the corresponding \(T_t \), respectively

9.4 Concrete procedure to calculate the SADT for a high explosive of the true AC type, having an arbitrary shape and an arbitrary size, placed in the atmosphere under isothermal conditions
size, confined in an arbitrary closed container of the corresponding shape and size, and placed in the atmosphere under isothermal conditions

9.5 The values of SADT calculated each for the eight high explosives of the true AC type

9.6 Particular high explosives of the true AC type

Chapter 10 Procedure to calculate the SADT for a powdery chemical of the quasi-AC type, having an arbitrary shape and an arbitrary size, confined in an arbitrary closed container of the corresponding shape and size, and placed in the atmosphere under isothermal conditions

10.1 Introduction

10.2 Procedure to perform several isothermal storage tests at each T_t, with mutual intervals of $1 \sim 2$ K, in order to calculate the values of the two coefficients, a and b, of Equation (59), \[\ln \Delta t = a/T_t + b \], holding for the induction period of the quasi-autocatalytic reaction of 2 [cm3] of a powdery chemical of the quasi-AC type confined in the closed cell and subjected to the isothermal storage test, for 2 cm3 each of several samples of the chemical confined each in the closed cell, for the time, Δt, from the insertion of each cell into the isothermal storage testing device till the start of the quasi-autocatalytic reaction occurring simultaneously with the finish of melting of the chemical at the corresponding T_t, respectively

10.3 Concrete procedure to calculate the SADT for a powdery chemical of the quasi-AC type, having an arbitrary shape and an arbitrary size, confined in an arbitrary closed container of the corresponding shape and size, and placed in the atmosphere under isothermal conditions

10.4 Results and discussion

Index
Notation

\(A_0 \)
Frequency factor in the rate constant of the exothermic decomposition reaction, of the zeroth order, of a chemical of the TD type, including every gas-permeable oxidatively-heating substance; or, frequency factor in the rate constant of the decomposition reaction, of the zeroth order, of a high explosive of the true AC type to generate the autocatalyst \([\text{mol}/(\text{cm}^3\cdot\text{min})]\).

AC type
Autocatalytic reaction type.

\(A_n \)
Frequency factor in the rate constant of the exothermic decomposition reaction, of the n-th order, of a chemical of the TD type, including every gas-permeable oxidatively-heating substance; or, frequency factor in the rate constant of the decomposition reaction, of the n-th order, of a high explosive of the true AC type to generate the autocatalyst \([(\text{mol})^{1-n}/(\text{cm}^3)^{1-n}\cdot(\text{min})]\).

\(a \)
Numerical coefficient defined by Equation (44) or Equation (59).

\(b \)
Numerical coefficient defined by Equation (44) or Equation (59).

\(b \)
Point of time when 2 [cm\(^3\)] of a chemical of the AC type, including every powdery chemical of the quasi-AC type, confined in the closed cell and subjected to the isothermal storage test performed at a \(T_t \) starts the autocatalytic reaction or the quasi-autocatalytic reaction.

\(C \)
Molar heat capacity [cal/(mol\cdot K)].

[\(C \)]
Molar concentration of a chemical [mol/cm\(^3\)].

\(c \)
Specific heat capacity [cal/(g\cdot K)].

\(c\rho \)
Heat capacity per unit volume [cal/(cm\(^3\)\cdot K)].

\(d \)
Day.

\(\text{div} \)
Divergence operator.

\(E \)
Activation energy in the rate constant of the exothermic decomposition reaction of a chemical of the TD type, including every gas-permeable oxidatively-heating substance; or, activation energy in the rate constant of the decomposition reaction of a high explosive of the true AC type to generate the autocatalyst [cal/mol].

\(e \)
Base of natural logarithm.
EOT Exothermic onset temperature.

grad Gradient operator.

h Hour.

h Film coefficient of heat transfer [cal/(cm²·min·K)].

J₀ Zeroth order Bessel function.

J₁ First order Bessel function.

K Equilibrium constant.

k₀ Rate constant of the exothermic decomposition reaction, of the zeroth order, of a chemical of the TD type, including every gas-permeable oxidatively-heating substance; or, rate constant of the decomposition reaction, of the zeroth order, of a high explosive of the true AC type to generate the autocatalyst [mol/(cm³·min)].

kᵣ Rate constant of the exothermic decomposition reaction, of the n-th order, of a chemical of the TD type, including every gas-permeable oxidatively-heating substance; or, rate constant of the decomposition reaction, of the n-th order, of a high explosive of the true AC type to generate the autocatalyst [(mol)¹ⁿ/(cm³)¹ⁿ·(min)].

L Liter.

l Wall thickness of a liquid container [cm].

ln Natural logarithm.

m meter.

m Mass [g].

n natural number.

Q Electric heat generated per unit time in a resister-thermocouple composite set in a draft cell in order to simulate the self-heating process of a chemical of the TD type, including every gas-permeable oxidatively-heating substance [cal/min].

q₁ Quantity of heat generated per unit time in the whole volume of a fluid filled in the container and placed in the atmosphere maintained at a Tₐ [cal/min]

q₂ Quantity of heat transferred per unit time from a fluid filled in the container and placed in the atmosphere maintained at a Tₐ, through the whole fluid surface, across the container walls, to the atmosphere [cal/min].

R Gas constant [cal/(mol·K)].
Radius [cm].

Whole fluid surface [cm²].

Temperature at which the self-accelerating decomposition reaction, or the autocatalytic reaction, or the quasi-autocatalytic reaction, that may lead to the ultimate thermal explosion of a chemical of the AC type, including every powdery chemical of the quasi-AC type, having an arbitrary shape and an arbitrary size, confined in an arbitrary closed container of the corresponding shape and size, and placed in the atmosphere under isothermal conditions, starts just 7 d after the placement of the container in the atmosphere maintained at the temperature [K].

To put it concretely, the SADT of a chemical of the AC type, including every powdery chemical of the quasi-AC type, is a value of \(T_t \) corresponding to a value of \(\Delta t \) of 10,080 min, \(i.e. \), 7 d, in Equation (59), \(\ln \Delta t = a/T_t + b \), holding for the induction period of the autocatalytic reaction, or of the quasi-autocatalytic reaction, of 2 cm³ of the chemical confined in the closed cell and subjected to the isothermal storage test.

As a matter of fact, however, the SADT may be regarded as the critical (or the lowest) temperature below which the thermal explosion of a chemical of the AC type, including every powdery chemical of the quasi-AC type, cannot occur.

Semenov number [dimensionless] (Se = \(1/e = 0.367879 \cdots \)).

Second.

Point of time when the adiabatic control for 2 cm³ of a chemical of the TD type, including every gas-permeable oxidatively-heating substance, charged, or confined, in some one of the open-cup, the draft or the closed cell, in accordance with the self-heating property of the chemical, and subjected to either of the two kinds of adiabatic tests started each from a \(T_s \), and, the record of the self-heating process of the chemical, are started, respectively.

Temperature of a chemical, or, that of a substance [K].

Temperature of the atmosphere, \(i.e. \), air at atmospheric pressure, in which a chemical of the TD type, including every
gas-permeable oxidatively-heating substance, having an arbitrary shape and an arbitrary size, is placed under isothermal conditions [K].

(When a container, in which a liquid is charged, is placed in a set-up in order to measure the main heat transfer data of the liquid, the T_a is expressed as the T_{set-up}.)

T_{atm} Temperature of the atmosphere around 2 cm3 of a chemical of the TD type, including every gas-permeable oxidatively-heating substance, charged, or confined, in some one of the open-cup, the draft or the closed cell, in accordance with the self-heating property of the chemical, and subjected to either of the two kinds of adiabatic tests started each from a T_s [K].

(After the start of the adiabatic control, the T_{atm} is raised automatically by the adiabatic control in order that the condition, $\Delta T_{diff} = T - T_{atm} = 0$, may always hold.)

T_c Critical (or the lowest) temperature below which the thermal explosion of a chemical of the TD type, including every gas-permeable oxidatively-heating substance, having an arbitrary shape and an arbitrary size, placed in the atmosphere under isothermal conditions, cannot occur [K].

TD type Thermal decomposition type.

T_s Starting temperature in the adiabatic self-heating test, or in the adiabatic oxidatively-heating test, performed for 2 cm3 of a chemical of the TD type, including every gas-permeable oxidatively-heating substance, charged, or confined, in some one of the open-cup, the draft or the closed cell, in accordance with the self-heating property of the chemical [K].

T_{set-up} Temperature of the atmosphere in a set-up, in which the main heat transfer data of a liquid charged in the container is measured [K].

T_i Testing temperature in the isothermal storage test performed for 2 cm3 of a chemical of the AC type, including every powdery chemical of the quasi-AC type, confined in the closed cell [K].

t Time [min].

U Mean overall coefficient of heat transfer from a fluid filled in the container and placed in the atmosphere under isothermal conditions.
conditions, through the whole fluid surface, across the container walls, to the atmosphere [cal/(cm²·min·K)].

\(V \) Volume [cm³].

\(x \) Spatial coordinates [cm].

Greek Symbols

\(\alpha \) Thermal diffusivity [cm²/min].

\(\alpha_e \) Effective thermal diffusivity of a powdery chemical of the TD type, including every gas-permeable oxidatively-heating substance [cm²/min].

\(\beta_n \) Positive roots of \(J_0(\beta_\text{cylinder} r_{cylinder}) = 0 \).

\(\Delta \) Laplacian operator.

\(\Delta \xi \) Dimensionless Laplacian operator.

\(\Delta H \) Molar heat of reaction [cal/mol].

\(\Delta T \) Difference between the temperature of a chemical and the \(T_s \) in the adiabatic self-heating test, or in the adiabatic oxidatively-heating test [K].

(The adiabatic self-heating test, or the adiabatic oxidatively-heating test, which is started from a \(T_s \), performed for 2 cm³ of a chemical of the TD type, including every gas-permeable oxidatively-heating substance, charged, or confined, in some one of the open-cup, the draft or the closed cell, in accordance with the self-heating property of the chemical, is interrupted as soon as the temperature of the chemical increases by the definite value of \(\Delta T \) of 1.25 K from the \(T_s \).)

\(\Delta T_{\text{diff}} \) Temperature difference, in the adiabatic self-heating test, or in the adiabatic oxidatively-heating test, between the \(T_{\text{ref}} \) and the \(T_{\text{atm}} \), or between the temperature of a chemical and the \(T_{\text{atm}} \) K.

\(\Delta T_{\text{rad}} \) Radial temperature difference effected in the non-steady state between the periphery and the axial center of the specimen of a powdery chemical of the TD type, including every gas-permeable oxidatively-heating substance, charged in a cylindrical cell heated at a very slow rate, \(\phi \), [K].

\(\Delta t \) Time required for the temperature of 2 cm³ of a chemical of the TD type, including every gas-permeable
oxidatively-heating substance, charged, or confined, in some one of the open-cup, the draft or the closed cell, in accordance with the self-heating property of the chemical, and subjected to either of the two kinds of adiabatic tests started each from a T_s, to increase by the definite temperature difference, ΔT, of 1.25 K from the T_s [min].

- δ: Frank-Kamenetskii’s δ [dimensionless].
- δ_c: Frank-Kamenetskii number [dimensionless].
- θ: Dimensionless temperature.
- κ: Heat transfer factor used by N. N. Semenov.
- λ: Thermal conductivity [cal/(cm·min·K)].
- ξ: Dimensionless coordinates.
- π: Ratio of the circumference to the diameter.
- ρ: Specific gravity, or density [g/cm3].
- τ: Dimensionless time.
- τ_{ad}: Frank-Kamenetskii’s adiabatic induction period.
- ϕ: Rate of increase in temperature, or, heating rate [K/min].

Subscripts

- a: of the atmosphere around a chemical of the TD type, including every gas-permeable oxidatively-heating substance, having an arbitrary shape and an arbitrary size, placed under isothermal conditions.
- atm: of the atmosphere around 2 cm3 of a chemical charged, or confined, in some one of the four types of cells, i.e., the open-cup, the draft, the touch-flow or the closed cell, in accordance with the self-heating property of the chemical, and subjected to either of the two kinds of adiabatic tests.
- $autocatalyst$: of an autocatalyst.
- c: critical.
- $cylinder$: of an infinite cylinder.
- $diff$: difference.
- e: effective.
- $elec$: electric.
- f: fluid.
- h: high.
inner
l
liq
lim
n
rad
r-cylinder
ref
r-inner
s
set-up
solid
t
threshold
0

inner.
low.
liquid.
limiting.
of the n-th order.
radial.
at the periphery of an infinite cylinder.
of the reference material.
at an arbitrary inner radius.
starting.
of a set-up.
solid
testing.
at the threshold.
of the zeroth order; or, at the axial center of an infinite cylinder.